Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth Conjugacy and S{r{b Measures for Uniformly and Non-uniformly Hyperbolic Systems

We give a new proof of the fact that the eigenvalues at correspondig periodic orbits form a complete set of invariants for the smooth conjugacy of low dimensional Anosov systems. We also show that, if a homeomorphism conjugating two smooth low dimensional Anosov systems is absolutely continuous , then it is as smooth as the maps. We furthermore prove generalizations of thse facts for non-unifor...

متن کامل

Multifractal analysis of non-uniformly hyperbolic systems

We prove a multifractal formalism for Birkhoff averages of continuous functions in the case of some non-uniformly hyperbolic maps, which includes interval examples such as the Manneville–Pomeau map.

متن کامل

Invariant Pre-foliations for Non-resonant Non-uniformly Hyperbolic Systems

Given an orbit whose linearization has invariant subspaces satisfying some non-resonance conditions in the exponential rates of growth, we prove existence of invariant manifolds tangent to these subspaces. The exponential rates of growth can be understood either in the sense of Lyapunov exponents or in the sense of exponential dichotomies. These manifolds can correspond to “slow manifolds”, whi...

متن کامل

Large deviations in non-uniformly hyperbolic dynamical systems

We prove large deviation principles for ergodic averages of dynamical systems admitting Markov tower extensions with exponential return times. Our main technical result from which a number of limit theorems are derived is the analyticity of logarithmic moment generating functions. Among the classes of dynamical systems to which our results apply are piecewise hyperbolic diffeomorphisms, dispers...

متن کامل

Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes

In this paper we consider horseshoes containing an orbit of homoclinic tangency accumulated by periodic points. We prove a version of the Invariant Manifolds Theorem, construct finite Markov partitions and use them to prove the existence and uniqueness of equilibrium states associated to Hölder continuous potentials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 1992

ISSN: 0010-3616,1432-0916

DOI: 10.1007/bf02096662